Hybrid neuro-symbolic reasoning

https://neuralreasoning.github.io/

Presented by Vuong Le
The two main approaches in Image QA

• Neuro-symbolic reasoning
 • Parse the question into a “program” of small logical inference steps
 • Learn the inference steps as neural modules
 • Use and reuse the modules for different programs
 + Explicit and interpretable
 + Close to human’s logical inference
 + Strongly support generalization
 - Brittle, cannot recover from mistakes
 - Struggling with nuances of language and visual context
 - Leon Bottou: Reasoning needs not to be logical inferences

• Compositional reasoning
Neural Module Networks

• NLP parser to build program
• The layout consists of modules which are learnable sub-networks
• Use attention as key compositional operator
Modules

- `attend[c]` has weights distinct for each `c` to produce a heatmap.
- `re-attend[c]` is MLP mapping from one attention to another.
- `combine[c]` merges two attentions into a single attention.
Modules

• `classify[c]` takes an attention and the input image and maps them to a distribution over labels.
• `measure[c]` takes an attention alone and maps it to a distribution over count labels.
Parsing

• Stanford parser: create grammatical dependency tree
• Forming the layout
 • Leaves become attend modules
 • Internal nodes become re-atten or combine
 • Root nodes become classify or measure depend on the question type
Neural Module Networks – example

Is there a red shape above a circle?

→ Relying on an off-the-shelf parser. What if it makes a mistake? Can the two steps be connected?
End-to-End Module Networks

- Construct the program internally
- The two parts are jointly learnable

There is a shiny object that is right of the gray metallic cylinder; does it have the same size as the large rubber sphere?
Layout policy

• A layout can be linearized into a sequence
• Then a layout prediction turns into seq-2-seq problem
• And can be done by an RNN encoder-decoder arch.
End-to-End Module Nets

- Layout policy \(p(l|q; \theta) \)
- QA loss according to such policy \(\tilde{L}(\theta, l; q, I) \)
- End-to-end loss \(L(\theta) = E_{l \sim p(l|q; \theta)}[\tilde{L}(\theta, l; q, I)] \)

- This loss is not fully differentiable as \(l \) is discrete
 - Policy gradient for non-diff parts, estimated through MC sampling

- Still a very hard problem as the two parts are more or less independent.
 - Direct supervision of \(p(l|q; \theta) \) using some expert policy
Combine the two main reasoning approaches

• Neuro-symbolic reasoning vs Compositional reasoning
 + Explicit and interpretable
 + Close to human’s logical inference
 + Strongly support generalization
 - Brittle, cannot recover from mistakes
 - Struggling with nuances of language and visual context

→ Can we combine the two?
 → Process questions into a series of symbolic instructions
 → Use the instructions for guide the compositional reasoning process
Neural State Machine

- Generate a scene graph from image
- Translate question into a series of instructions
- Traverse the graph using the instruction toward the answer
Neural State Machine \((C, S, E, \{r_i\}_{i=0}^N, p_0, \delta)\)

- **C**: Concepts: *obj identity, attributes, relation*
- **S**: States: *objs detected in image*
- **E**: Transition edges between the states: *relations of objs*
- \(\mathbf{r}_i\): a sequence of instructions: *encoded from the question*
- \(p_0: S \rightarrow [0, 1]\) distribution of the initial state.
- \(\delta_{S,E}: p_i \times r_i \rightarrow p_{i+1}\) a state transition function
 - a neural module that at each step \(i\)
 - considers the distribution \(p_i\) over the states as well as an input instruction \(r_i\)
 - redistribute the probability along the edges, yielding an updated state distribution \(p_{i+1}\).
State transition

Attention is being shifted from one node to its neighbor along the most relevant edge.

- Explicit reasoning ✓
- Multi-step information refinement ✓
- Dynamic structure reasoning ✗
NSM in action

→ Is the sequential order of reasoning necessarily the (inverse) order of the words in question?
→ Is the reasoning state transitions only attention shifting?
→ The gap between symbolic and compositional reasoning is still there