3. Reasoning as Memory

Introduction

ltem memory
Relational memory
Program memory

Introduction

Memory is part of intelligence

* Memory is the ability to
store, and
information

* Brain memory stores items,
events and high-level
structures

 Computer memory stores
data and temporary
variables

Memory-reasoning analogy

1.0
e 2 processes: fast-slow
o Memory: familiarity-recollection 0.8 1
* Cognitive test:
o Corresponding reasoning and Sk
memorization performance Reasoning
o Increasing # premises, 0.4
inductive/deductive reasoning is - _ :r’d
ures
affeCted 0.2 - © new-medium
= new-small
0.0 T T v v
0.0 0.2 0.4 0.6 0.8
Memory

Heit, Evan, and Brett K. Hayes. "Predicting reasoning from memory." Journal of Experimental Psychology: General 140, no. 1 (2011): 76.

1.0

Common memory activities

* Encode: write information to the
memory, often requiring
compression capability

* Retain: keep the information
overtime. This is often assumed in
machinery memory

: read information from the
memory to solve the task at hand

Retrieve

Memory taxonomy based on memory content

ltem ~ e Objects, events, items,

Memory variables, entities
Relational e Relationships, structures,
Memory graphs

Program * Programs, functions,
<
Memory procedures, how-to knowledge

[tem memory

Associative memory
RAM-like memory

Independent memory

Distributed item memory as
associlative memory

Language Time Object

Where is my pen?
birthday party on What is the
30t Jan password?

"Green" means
"go," but what
does "red" mean?

Semantic Episodic Working
memory memory memory

Behaviour

4 o

1

Pavlov’s dog

memory

Associate memory can be implemented as
Hopfield network

Fast-weight
M
B B (O
B u /
> lol - ——— ——— ' ~
;: _-b-l _-b-l . 4 /\—’4\/-—-
. 7. 7, : 4l
| [:>_ i [:> | [:> g [:> _,4\ _
= iy i ~—1— 7 L
&1 U BT 8T N e
(ol | | LIe] | LI [e] [T T 1 Trained
Ot 0?2 03 Ot CMM.
(a) (b) (c) (d) (e)
Correlation matrix memory Hopfield network
N
Encode M 2 b aT Retrieve b Ma Retrieve 7 (t + 1) = sign | Y wy;x; (1)
J=1

Feed-forwa rd Recurrent
retrieval retrieval

Rule-based reasoning with associative memory

Conversion of lexical items to binary patterns.

o . A = 100010 1 = 100001 X = 0011
EnCOde a set of rules: B = 011000 2 = 010010 Y = 0110
- 1+ C = 000110 3 = 001100 Z = 1100
pre-conditions Suter product 3 = 001100
Lo 5 = 000011
- post-conditions” for binding 6 = 110000
Bind tokens to form tensors. Assign separators.
. A:l= B:3 = C:4 =
¢ Support variable 100001 000000 000000 gl - gggg;
AT . 000000 001100 000000 2 =
binding, rule-conflict 000000 001100 000000 S3 = 00100
. . 000000 000000 000101
handllng and partlal 100001 000000 000101
i 000000 000000 000000
rule input
] Superimpose-to form SIBs. Train into arity 3 network.
* Example of encoding AL Bi3 . Cid = STB; - 00 large t show).
Up . . . 7,
rule “A:1,B:3,C:4>X 001100 s
000101 v =
100101
000000 Woew " =51 x X

Austin, Jim. "Distributed associative memories for high-speed symbolic reasoning." Fuzzy Sets and Systems 82, no. 2 (1996): 223-233.

Memory-augmented neural networks:
computation-storage separation

(=)

%00 B
s - Computer that learns
o @Q ® + — from examples
ooe0® (or neural net that

separates computation
from memory)

CPU

RNN Symposium 2016: Alex Graves - Differentiable Neural Computer

11

Neural Turing Machine (NTM)

* Memory is a 2d matrix

e Controlleris a neural - . L
~tTX =

network ExternalNnput Externai Output

* The controller read/writes \ /
to memory at certain 090
addresses. Cotoller | FETRY

* Trained end-to-end, e 77\
differentiable - Read Heads Write\Heads

 Simulate Turing Machine I |

- support symbolic reasoning, Memory
algorithm solving

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).

Input

exp (ﬁtl{ (k. M (4)])

Addressing mechanism in NTM

Previous wy(i) < i)
State Zj exp (ﬁtﬁ [kt: Mt(.})])
=l
| Wi_1 i
5 M, ; wi — gwi+ (1 — g)wy_y.
Controller / N—-1
Outputs 4: S L (i) +— Y wi(5) si(i — j)
| kt | Addressing | , WE -
3 > W;‘- Interpolation _}' 4/:
| {f | Convolutional [W¢
T 9t — > Shift >
I f=® =i > Sharpening
| >

et; at

Memory writing

M, (1) «— M,_1 (i) [1 — wy(i)e,]

Mt(?) — D:/It(ﬂ) + ’U.-'-‘t(’ﬂ') a;.

Memory reading

ry «— Z ?I;Tt(i)Mt(i)}

Optimal memory writing for memorization

e Simple finding: writing too often
deteriorates memory content (not N
retainable) =

* Given input sequence of length T i
and only D writes, when should we | | o n
write to the memory?

N —-

Theorem 3. Given D memory slots, a sequence with length T, a decay rate 0 < A < 1,
D+1 . - . .
then the optimal intervals {l; € RJF}iJIl satisfying T = > 1; such that the lower bound on Uniform writing Is optlmal for
=1 . .
D41 "’ memorization
the average contribution I, = JE > falli) is maximized are the following:
=1

T

D+1 ()

h=l=..=lpu =

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Learning to Remember More with Less Memorization." In International Conference on Learning Representations. 2018. 14

Better memorization means better algorithmic
reasoning

| Max | zize..xp | max(zy,22) max (s, x4)...max (rr—_1,27) |

T=50, D=5

Decoding Read Weight

Decoding Read Weight

Encoding Write Weight

Encoding Write Weight

o 4 ng 'l
(]
Il
k)
o =
ﬁ !
5)
0 =
= =
Sl =
= =
=]
=] =
]
E -
1]
Il

Uniform (cached)

Regular

Memory of independent entities

e Each slot store one or some entities

* Memory writing is done separately for
each memory slot

—>each slot maintains the life of one or
more entities

* The memory is a set of N parallel RNNs

Weston, Jason, Bordes, Antoine, Chopra, Sumit, and Mikolov, Tomas.
Towards ai-complete question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

Task 3: Three Supporting Facts
John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.

Where was the apple before the kitchen? A:office

RNN 1 John Apple John Apple Office John Apple Kitchen
RNN 2 Apple John Apple John Office Apple John Kitchen

Time

A 4

16

Recurrent entity network

(e

key

fo

Q@

Nemory slot

fo

update

gate

— “ Jre —-. b

hy i _.-

update vate update
| 95 < o(sf hj + s w;)
hj < qi)(UhJ + V“LUJ' + WSt)
/
O | .
® e Ca

update

IeInory slot

mpt @

hj<—hj+gj®hj
h;

“Where 1s the ball?”

p; = Softmax (g’ h;)
=) pjh;
J

y = Ro(q+ Hu)

AN

Garden

hj(-

17

Mary picked up the ball)

it @

Henaff, Mikael, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
"Tracking the world state with recurrent entity networks."
In 5th International Conference on Learning Representations, ICLR 2017. 2017.

Mary went

to the garden.

17

Recurrent Independent Mechanisms

Default Sparse Default Sparse
dynamics Communication dynamics Communication
ol i il
F T | {)

CEE]

\.
'y y =
N _[Pet1 huyy) hiyo
'\
RS = =P Query
E —— Passing Gradient
Input Tarorii | [» No Passing Gradient
B ActiveRIM

D Inactive RIM
O Key-Value Attention

hik = Dy(heg) = LSTM (hy i, AU™: 67 \k €S,

\

Top down attention

Competing RIMs

Biased competition

based on top down

attention

Bottom up visual information \

Qt,k = W}gﬁt‘k,Vk € St Kt,k = Wk?fbt,kab;k Ift,k = Wﬂﬁt,k}Vk

Qui(Ki.)"
V.

h¢y1) = softmax () Vi.+ Et,ka cS;.

Visual input

Agjn) = softmax (

hWI(XWe)T

V.

)xw,

Goyal, Anirudh, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard Schoélkopf. "Recurrent independent mechanisms.“ ICLR21.

18

Relational memory

Graph memory

Tensor memory

Motivation for relational memory: item
memory is weak at recognizing relationships

A Retrieval-based inference

e Store and retrieve individual items
* Relate pair of items of the same time step
* Fail to relate temporally distant items

~ q
M = Zbka{

Dual process in memory

* Store items
* Simple, low-order
System 1

Store relationships between items
Relational * Complicated, high-order

Memory * System 2

Howard Eichenbaum, Memory, amnesia, and the hippocampal system (MIT press, 1993).

Alex Konkel and Neal J Cohen, "Relational memory and the hippocampus: representations and methods", Frontiers in neuroscience 3 (2009).

Memory as graph

- - (2 Y
* Memory is a with B0 @

fixed nodes and edges B
: . mt. = f (i RS " .
* Relationship is somehow i ’ \ // \\ ot = r (h!)
mis Mo
known / m3, M3
* Each memory node stores the Ly N

state of the graph’s node @ ML, A HE

Mo
* Write to node via message (o) fj;
passing ~ —

e Read from node via MLP

Palm, Rasmus Berg, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks." In Neur/PS. 2018.
22

bADbl

x; = MLP(concat(last(LSTMg(s;)), last(LSTM¢q(q)), onehot(p; + 0)))

CLEVER

0; = concat(p;, onehot(c;), onehot(m;))

‘\ q = concat(onehot(s), onehot(n))
Edge x; = MLP(concat(o;, q))
Node)
t__ t
_ o =r(X; hi) ~ <
Question \ Node
Factl | () —F—— (colour, shape. position) \
- Answer
- Edge \ v e
° (distance) >
M3y \+ “
Fact2 | (mg)y X solution to the question: “green, 3 jumps”, which is “plus”,
miy -—- RRN(1) =-- RRN(2) =--- RRN(3) =--- RRN(4)
RN —— Random —— MLP
. 1.0
ma 0.8
Fact 3 @ ******************
A .. 06
N .
it _ i—1 t—1 <04
m'lj - f (h‘t =hj _*Eij‘)
0.2
Method N Mean Error (%) Failed tasks (err. >5%)
RRN* (this work) 15 0.46 £ 0.77 0.13+0.35 0.0
0 1 2 3 4 5 6 7

Question jumps

Memory of graphs access conditioned on

query

* Encode multiple graphs,

* For each graph, the avery —{ controller |
controller read/write to the / \
memory: /t\ _—

* Read uses content-based INSOTIE

attention
* Write use message passing

* Aggregate read vectors from
all graphs to create output

Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv preprint arXiv:1808.04247 (2018).

Capturing relationship can be done via
memory slot interactions using attention

* Graph memory needs customization to an explicit design of nodes and edges
* Can we automatically learns structure with a 2d tensor memory?

* Capture relationship: each slot interacts with all other slots (self-attention)

Compute attention weights Normalize weights with row-wise softmax Compute weighted average of values Return updated memory

Queries Keys il 2 ‘Weights Normalized Weights Weights Values Updated Memory
i1 o000 0@ YYXXXX. eocleee@ 0@ oo0@ ool (o] (oo R XXX
" YYXXXX] o0000®QO®|/, ©O000O0|—>0O O @ e 00000 YXXXX,
©00000 r 000000 ©c0000Q @ oo ©o0o0oo sececee
eeeeee® eo0oc00 0000 o] © —/ ©00000 ---|1|:-
Q eeceee QK" Ht}|-1.1[l¢'-'|}CI';thTj Hni'l.tn-rlx{QH'T] e °° D—EI]_D ° M
K v

¥
g 4

Santoro, Adam, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap.
"Relational recurrent neural networks." In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7310-7321. 2018.

25

Relational Memory Core (RMC) operation

LR N N N N
L N N N N
LR N NN N
LR N N N N

sﬂfmm:{{QHT] V

CORE Output MULTI-HEAD DOT PRODUCT ATTENTION

W quer‘f {1
l l eeccee >0 00000

W k L

Prev. N NN NN i ey ki
» A —®— MLP—P— Memory—» PR

Memory + Residual Residual eeecece
~ Next XXX X] value v
' . A 000000
Apply gating | Memory Input-+L 000000
Input ***computation of gates not depicted

Sit — (hi,t—l: mz’,t—l)
fir =Wl + Ufhz’,t—l + v

RNN-like
Interface

it = Wiz, + Uﬁhz’,t—l + b
0it =W + U 41 +b°

mit=o(fit+ Ef) om; -1+ 0(iit) 0 qu(ﬁ%.t)
N —

,Updated
Memory

ﬁf:ﬁmﬂmm{(

MWa([M;]V)T

vk

) [M; 2|W,

hit=o0 (Oi,t) o tanh(mi‘t) row/memory-wise MLP with layer normalisation

Sit4+1 = (mi,ta hi,t)

26

Allowing pair-wise interactions can answer
guestions on temporal relationship

attention weights

attending to time ‘ 0.0 0.2 0.4 0.6 0.8 1.0
£ 01234567 & - ' . _—
O -/'m [| |
=~] n [| n |
o | [| [| n [|
c " " n] u u n "
iy - u a n .- . What is the N farthest from vector m’
E < N | | | |
E ~ | [| L | [N BN | B S A a4
| — I — 1 1 | 1 s I . 1 L 1 I . 1 L - [']
@ Input Vector Id (3) Reference vector is the last in a sequence, e.q. "Choose the 5th furthest vector from vector 7" . - ; \ dy 3
_ _ _ o w4 / :
B O B O | | o | E - a4
— \
n | | | R I
N | | L,
[| [| o U3
| | [I -
I BN (NN NN Nl B L [N N N v
| 1 O 1 [| —) | — | 1 [1 [. T 1
(b) Reference vector is the first in a sequence, e.g. "Choose the 3rd furthest vector from vector 4"
e I B Srm e vl - . .
	[
] [[[
I	[
[!						
—		u L]					
e 1 [[1 - L L 1 . 1 [| i— | — =

(c) Reference vector comes in the middle of a sequence, e.q. "Choose the 6th furthest vector from vector 6" 27

Dot product attention works for simple
relationship, but ...

Self-attentive associative

memory

M, = LN (W, M)

M = M; + a3Gy o Vs o M]

0y =Gz o0V 0G0V 0o M;

M = LN (WkM)
M, = LN (W,M)

4 ™

. Outer product
. Summation
. Element-wise multiplication
. Item memory
Relational memory
. Neural networks €

[Key
B value

I Query
L

SAMy (M) [s] = A® (M, [s] , My, M) (7)

= Z}—(Mq [s] © My [j]) @ My [5] (8)

v; = softmax (fg (Il’,‘t)T) M fa () (11)

M = M | + a1SAMy (M + aov] @ fo (24)) (12)

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020.

29

Complicated relationship needs high-order
relational memory

&= Feu
AR ;

Associate every pairs of them

3d relational
tensor

30

Program memory

Module memory

Stored-program memory

Predefining program for subtask

* A program designed for a task
becomes a module

 Parse a question to module
layout (order of program
execution)

* Learn the weight of each
module to master the task

couch

Where is T
the dog? == i
T [
: | where
Parser Layout i
| |

CNN

Andreas, Jacob, Marcus Rohrbach, Trevor Darrell, and Dan Klein. "Neural module networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39-48. 2016. 32

Program selection is based on
narser, others are end2end trained

3 classify : Image X Attention — Label

1 attend : Image — Attention 2 re-attend : Attention — Attention
classify[where]
5 mOdUIe attend[dog] re-attend[above]
I + Attend (> FC [~ Softmax
temp ates Convolution FC | ReLU

measure : Attention — Label

4

measure[exists]

!—* FC = ReLU = FC P~ Softmax yes
attend[red] .

combine[and] —e measure[is] -b{_ Yes)

L J

is there a red shape above
a circle? attend[circle] r"é' attend[above]

Parsing
5 combine : Attention x Attention — Attention
measure[is](

combine[and](
attend[red],
re-attend[above](
attend[circle])))

combine[except]

Stack (= Conv. B RelLU

33

The most powerful memory is one that stores
both program and data

« Computer architecture: Universal HEE, “« “«
TAPE

TU ring MaChineS/Harvard/VNM j;r::.c:delnumber of a Tu'ﬂchine M Input to M Output _{':

» Stored-program principle g
symbol Rl s i
. . Table of U Wit Move Rad | Wits Mo R Writs Boss Pt

» Break a big task into subtasks, Rty PR el e

each can be handled by a S [P U EV R s)RR

| Comtral unit

TM/single purposed program

stored in a program memory

https://en.wikipedia.org/ 34

NUTM: Learn to select program (neural weight) via

program attention

* Neural stored-program memory
(NSM) stores key (the address)
and values (the weight)

* The weight is selected and
loaded to the controller of NTM

* The stored NTM weights and the
weight of the NUTM is learnt
end-to-end by backpropagation

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory."
In International Conference on Learning Representations. 2019.

35

Scaling with memory of mini-programs

* Prior, 1 program = 1 neural
network (millions of parameters)

* Parameter inefficiency since the
programs do not share common
parameters

 Solution: store sharable mini-
programs to compose infinite
number of programs

Reconstruet and load Retrieve modular
1 T Newral Programs units based on input
T epl | et Tig
I‘H'“a.,_J “"'-\.__] . . \"'x_- .]
a . T L]
| | _) R
' < s a Nl a5 S
. H'“"-J | . . Nl‘x,‘
Main ’
Network Program Program
Controller Memory

it is analogous to building Lego structures
corresponding to inputs from basic Lego bricks.

36

Recurrent program attention to retrieve
singular components of a program

P, = USVT P yany
rm 56050 ‘ P>
_ . -|T 00000, mg; © Usage | k"™ Keys Mz ot
—_— Jtn?.‘-tn?)tn 20000 [[o] Al =;"’.—"\I
0000 -
T
P, & My
o 1 . g Queries g " Goles 0000
Utn = E '?I,TﬁnM,{_} (1) ’ : 5 000 00—
i=1 | Ij é (elelalele]
(elelelele] ﬂ'tj
P, 00000
. _ o . i Mo w
o =y wh,Mv (i) p e b | M Q—
i-:]. > P[Dg[ﬂ_‘l‘t‘l ® Outer : o000
Attention Pfl:ld.u':t E o000 Utj
B i Co0——
Program '{:.:] Multiply @ Sum ; Qo0 Program
: P, . Controll : M
softplus (> iy wi Mg (i)) n=rm —_ LR

Otn — i P ‘
Otn41 + softplus (Zi; L ws Mg (-.a,)) n < rm

Le, Hung, and Svetha Venkatesh. "Neurocoder: Learning General-Purpose Computation Using Stored Neural Programs." arXiv preprint arXiv:2009.11443 (2020).
37

= Linear classifier

~—4— Newrocoder (H=1)

Program attention is equivalent to
binary decision tree reasoning

Error (%)

Recurrent program attention auto
detects task boundary

DN

K] 104

Arierios

Boundary

=50 4

— 1} A

i

Funiom
Houndary

—— Ground bruth
—— Meurooader

=T

=

1

3

Number of recurrent attention steps (B

(a)

L=

RJ
=)
bk
=

f=]
(=]

(]

==
(]
=]

o
L=}

PJ

[
[o¥]
=

(=]
=

][R

=
o

rJ
(=]

=]
=

]
(=)
=
=

Lol U]l wlul-Jo

[
(=]

]
=

ki
L=

[
L=

]

=
]
=

[}
=]

P

=)
[
L=

=]
B
n

m o

m o

o o

v o

o

wn

m o

o

=]

~
o -
L

[Ny}

wmoo

R T T b

m Qo

QA

10. Combinatorics reasoning

RNN
MANN
GNN
Transformer

Implement combinatorial algorithms with

neural networks

Train neural processor P to imitate algorithm A
P

P rocessor P: Abstract inputs : Processor) Abstract 01.1-tp1.1ts
+ 4

(a) aligned with the - ; E’J , /

computations of the target
algorithm;
(b) operates by matrix

dimensional latent spaces

P2 a8

g8

Xr

Velickovi¢, Petar, and Charles Blundell. "Neural Algorithmic Reasoning." arXiv preprint arXiv:2105.02761 (2021).

multiplications, hence (2)
nat|Ve|y admlts usefu' Natural inputs Natural outputs
gradients; P ¥ g

(c) operates over high- A7 ;:

Generalizable
Inflexible

Noisy
High dimensional

41

softmax (u")

-u.; = ol tanh(Wye; +Wad;) j€(1,...,n)

Processor as RNN

* Do not assume knowing the

structure of the input, input as a
sequence

—>not really reasonable, harder to
generalize

* RNN is Turing-complete = can
simulate any algorithm o
* But, it is not easy to learn the o omrn] g
simulation from data (input-output) :
— Pointer network
A O (N) (d) Ptr-Net, m=5-50, n=500 (e) Ptr-Net , m=50, n=50 (f) Ptr-Net , m=5-20, n=20
ssume memory
And O(NAZ) com pUtation Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks."
N | S th e Si ze Of input In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, pp. 2692-2700. 2015.

42

Processor as MANN

° MANN SimU|ates neural a Controller b Read and write heads € Memory :n:;ﬂferpnogr:fﬁgﬁs
computers or Turing
machine—> ideal for
implement algorithms T
* Sequential input, no C@—» :
assumption on input o
structure 1
* Assume O(1) memory

and O(N) computation

Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471-476 (2016) 43

a Read and write weightings

(]
D N ‘ * I t e I I ' — Graph definition
° Oxford Circus>Tottenham Court Rd [l
Tottenham Court Rd>Oxford Circus W
Green Park>Oxford Circus]
f VictoriaxGreen Park |]
(]

Oxford Circus>Green Park [|
Green ParksVictoria]
Green Park>Piccadilly Circus [|
Piccadilly Circus=Leicester Sq [|
Piccadilly Circus>Green Park | |
Leicester Sg=Piccadilly Circus | |
Piccadilly Circus=Oxford Circus]
Charing Cross>Piccadilly Circus []
Piccadilly Circus=Charing Cross [|
Oxford Circus>Piccadilly Circus | |
Leicester Sq=Tottenham Court Rd [|
Charing Cross>Leicester S5q |
Leicester Sg>Charing Cross [|
Tottenham Court Rd>Leicester Sq [|
Victoria>___ Victoria N
_ > Victonia N
»>__ Central E
_ > MNorths
__ > Piccadilly W
__>__ BakerlooN
_ > CentalE

1ons

Decoded memory locat

b Read mode

Backward
Content

EEEEE
B Write head Foward HENENENENNENENENENE am

W Read head 1 Backward

Content
BMReadhead2 0 4 EEEENEENEEEENEEEEE

0 5 10 15
Time

a Weightings Decode € Board states

H A4
| A4

Query

 DENEEE
20 25

Answer
|

30

€ London Underground map

Locations
t 220000 A4 440

d Read key e Location content
¥ Decode ¥ ¥+ Decode ¥
From To Line From To Line
I | NI N[.
wEgunD ® ¥Te 00 SxnUzZOWUSZN X000 TDE axOo0 9T 0ZOUZZFOWSZN
RSB g s AF a8 E S o cpraocs 003355 BEP 38 5o 0ssezans
STESSSEoT oSS EEsE s ot a8 ot Eso 58 SEEEEEsES
2880>3> PRBp 23> 0E2922 %00 285283 PR 23> 288522 8o
ERoFEO0” ERoFE2O" g803" 8355 ERoFEOT ERGFE2OT gFOST 8gSS
EOBQEE E‘“E‘EEE B B ‘Ewg-ﬁgE j::‘iwﬂ-;"ﬁE @ o
] DQE] DQE] DQE & OQE
- c = c - [= - c
o @ o o oo oL ©
5 B 5 5
- = = -
c Family tree
lan Jodie Alan |Lindsey
¢ 6 B 6 6 HE o
Mary Becky Tom Charlotte Alison i Fergus | Jane
| i
EE O o m
Steve Mat Liam Nina | Alice Bob
1
1
L

Simon Freya Maternal great uncle Natalie

44

Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471-476 (2016)

NUTM: implementing multiple algorithms at once

— NTM —=- NUTM (p=2)

Cost per sequence (bits): 18.0

o] s 7
Copy Repeat Copy Associative Recall .
0.7 0.7 ® C 4 iR
ﬁ a6 - 0.6 = N
3 3
= n 0.5 R
o] 1 — NTM
]
R 034 0.3 0
@ 0 10 20 30 40 50 60 70
P 0 e § (
5) NUTM (p=3)
a0 o 0.0
T T T T T T T T T T T
o 10K 206 30K 40K 50K a 20K 40K 60K 80K 100K 0 20K 40K GOK BOK
Sequence Number Sequence Number Sequence Number

Cost per sequence (bits): 0.0

Cost per sequence (bits): 0,0 -

0 20K 40K
Sequence Number(x16)

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory."
In International Conference on Learning Representations. 2019.

45

° : Priority sort RAR
STM: relational
a -~ LSTM 60 -
g]S{] 200“]\TT\'I
memory 10r : N
@] —— STM
5100 150 40
. a
s 100 1
graph reasoning .|
v | 501
m 0-| T T T T T T T T
0 20K 40K 0 20K 40K 0 20K 40K
Sequence Number(x128) Sequence Number(x128) Sequence Number(x128)

Figure 2. Learning curves on algorithmic synthetic tasks.

Model #Parameters Convex hull TSP Shortest Minimum
N=5 N=10 N =5 N =10 path spanning tree
LSTM 45M 89.15 82.24 73.15 (2.06) 62.13 (3.19) 72.38 80.11
ALSTM 3.7M 89.92 85.22 71.79 (2.05) 55.51 (3.21) 76.70 73.40
DNC 1.9M 89.42 79.47 73.24 (2.05) 61.53(3.17) 83.59 82.24
RMC 2.8 M 03.72 81.23 72.83 (2.05) 37.93(3.79) 66.71 74.98
STM 19M 96.85 91.88 73.96 (2.05) 69.43 (3.03) 93.43 94.77

Table 3. Prediction accuracy (%) for geometry and graph reasoning tasks with random one-hot associated features. Italic numbers are
tour length—additional metric for TSP. Average optimal tour lengths found by brute-force search for N = 5 and 10 are 2.05 and 2.88,
respectively.

46

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020.

Processor as graph neural network (GNN)

7 e RNy,

LE

/

Output

] https://petar-v.com/talks/Algo-WWW.pdf

Motivation : Velickovi¢, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
"Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

* Many algorithm operates on graphs
» Supervise graph neural networks with algorithm operation/step/final output
* Encoder-Process-Decode framework:

At) 7()

7 =ga(Z; " ;")

Y.
<

0 = (T, (HY, HO))

A

720 = fa@? 1Y)

1

H® — P(Z{t),E(t))

q

’
o4

Attention h(t) RelLU Z (—(t) —(t)’ _.(t)) W—(t E(t) — U z{t), @ M (E{t)? E(t)..é(t)) Message
] j 1] i 1 i J) .
(j.i)EE i passing a7

https://petar-v.com/talks/Algo-WWW.pdf

Example: GNN for a specific problem
(DNF counting) ‘6 16 70 /o
O @

e Count #assignments that satisfy disjuntive
normal form (DNF) formula
\~® ©

* Classical algorithm is P-hard O(mn)
*m. #Clauses’ n. #Varlables Figure 2: Graph encoding of the DNF formula
* Supervised training P lmnnm) vm g

'ﬁa:n._t+l:Lc1(“ 1 ﬂf£(11mi.t)) Uy t+1 :Ld('v:rd.h > M (0, t+l)) Uz, t+1 = Le, (!a: a1y Ma(ve,, t+l))

(eN(z1) T.eN(za)
?J!_.Hl:Lg('Ul-l__t,(Z 4'1':{{3('?}1‘_:_1_{_1)||4‘1{{[('U_,$ht)))

O\\ & / = zeeN (1)
@ 0 - € » @

~ Ko

~T
@ @ = @ N
@ —I9]

(b) (c) (d)
Abboud, Ralph, Ismail Ceylan, and Thomas Lukasiewicz. "Learning to reason: Leveraging neural networks for approximate DNF counting.”
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3097-3104. 2020.

[0

e

eexeo

Best: O(m+n)

X

N\

48

Example: GNN trained with reinforcement
learning (maximum common subgraph)

* Maximum common subgraph (MCS)
is NP-hard

e Search for MCS:

* BFS then pruning
* Which node to visit first?

 Castto RL:

* State:
e Current subgraph

* Node-node mapping
* |Input graph |:> (0)
e Action: Node pair or edge will be %f()
6, G2

visited
* Reward: +1 if a node pair is selected
* Q(s,a)=largest common subgraph size © Root O Pruncd by branch and bound

o Terminal ~ == Subgraph Growth

Predicted
MCS

Bai, Yunsheng, Derek Xu, Alex Wang, Ken Gu, Xueqing Wu, Agustin Marinovic, Christopher Ro, Yizhou Sun, and Wei Wang.

"Fast detection of maximum common subgraph via deep g-learning." arXiv preprint arXiv:2002.03129 (2020). 49

Learning state representation with GNN

Bidomain representation

Q" (s¢,a1), as 7t + YV (st41) hp, = INTERACT(READOUT({h;|i € Vj;}),

Q(s¢,a) = 1+’]r'MLP(CONCAT(INTERACT(hgl, hg,), READOUT({h;[j € Vis})).
INTERACT(hs1, hs2), hpe, hﬂn))- READOUT({hp, |k € Plc)}:
Pretrain with ground-truth Q or expert estimation
Then train as DQN Method RoAD DBEN
— T GLSEARCH (no hg) 0.977 0.878
20000 GlSearch-Rand —— McSp GLSEARCH (no h,) 1.000 0.874
4000 17500 —— GlSearchScal - McSPHRL GLSEARCH (no hp.) 0.803 0.780

15000

GLSEARCH (no hpo) 0.576 0.856
GLSEARCH (SUM interact) | 0.902 0.913
GLSEARCH (unfactored) 0.447 0.807
GLSEARCH (unfactored-1) 0.500 0.789
GLSEARCH 0.992 1.000

BEST SOLUTION SIZE 132 508

3000

12500

10000
7500
5000

2000

1000
2500

GLSearch-Rand —— McSp
—— GLSearch-Scal -==- McSp+RL

Size of Best Solution Found So Far
Size of Best Solution Found So Far

o
o

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Runtime (sec) Runtime (sec)

(a) Result on ROAD-CA with 978513 nodes. (b) Result on ROAD-TX with 1080909 nodes.

50

Neural networks and algorithms alignment

Hi

7N

Fom P -

hPHard
A—{:\mn:r\
[|

'-.__\\--:--/j.-' E l‘_h__#/f

KP-Compiste

Summary statistics Relational argmax Dynamic programming NP-hard problem
What is the maximum value =~ What are the colors of the What is the cost to defeat monster X Subset sum: s there a
difference among treasures? furthest pair of objects? by following the optimal path? subset that sums to 07
T g
MLPs Deep Sets (Zaheer et al, GNNs GNNs Neural exhaustive

~ feature extraction f E ~ summary statistics % ~ (pairwise) relations m ~ (pairwise) relations search

h(k} . h[LPgH (h(k—l): hg.‘sr I])
y = MLP(||ses.X,) y = MLP, (Z I‘”APJ_(X.J) 5 Z;)
y = MLP, (E hgfﬂ)
https://petar-v.com/talks/Algo-WWW.pdf sES

Xu, Keylu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What Can Neural Networks Reason About?." ICLR 2020 (2020). 51

100% 95% Q6% 100%

9%

GNN is aligned with
Dynamic Programming (DP) NS N s

(a) Maximum value difference.

) 96% 94% 91%
Graph Neural Network Bellman-Ford algorithm 62%

27%

| for k = 1...GNNiter: | | for k = 1...1SI-1: | — 0%
GNN7 GNN4 GNN3 GNN2 GNN1 Deep MLP
Sets
BRI Noneedtolearn for-oops [N

h,® = Z, MLP(h,(x1), h,(1) d[k][u] = miny d[k-1][v] + cost (v, u)

(c) Monster trainer.

Learns a simple reasoning step 95% 9o%

21% go

GNN3 GNN1 Deep MLP
Sets

(b) Furthest pair.

hy(® d[k][u] |
- 7% 69% _ 619% 60%

Sets

MLP(h,&-1), h,(k-1)) Bid [k-1][v] + cost (v, u) (d) Subset sum. Random guessing yields 50%.
Neural exhaustive

search MLPg(maxTc_:g MLP; o LSTM(Xl, ...}X|T| : X1, ...}X|.r| (S T)) 59

If alighment exists = step-by-step supervision

* Merely simulate the

a (29,49, 49)
classical graph algorithm,
generalizable

M (0, 20,&Y))

bl £71

* No algorithm discovery win (4, i 40+ o) oo T (o, u(2.2.4)

(vu)eE (vu)eE

Algorithm Inputs Supervision signals)
o 2 (t+1)
Breadth-first search i i re > ¥ 7 ’
@, "+ 1s t reachable from s in < ¢ hops’ 7 has the algorithm terminated?
IEHl)v
Bellman-Ford :rgt): shortest distance from s to ¢ 7@, — Joint training is
(using < ¢ hops) pgt}: predecessor of ¢ in the encouraged
shortest path tree (in < { hops)
IEHl)s
Prim’s algorithm 2{": is node i in the (partial) MST (),
(built from s after ¢ steps)? pgt}: predecessor of ¢ in the partial MST
— 53

Velickovi¢, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. "Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

Table 1: Accuracy of predicting reachability at different test-set sizes, trained on graphs of 20 nodes.

GAT™* correspond to the best GAT setup as per Section 3 (GAT-full using the full graph).

Reachability (mean step accuracy / last-step accuracy)

Model 20 nodes 50 nodes 100 nodes
LSTM (Hochreiter & Schmidhuber, 1997) 81.97% / 82.29% 88.35% /91.49% 68.19% / 63.37%
GAT#* (Velickovié et al., 2018) 03.28% / 99.86% 93.97% / 100.0% 02.34% [99,97 %

GAT-full* (Vaswani et al., 2017)

78.40% / 77.86%

85.76% / 91.83%

88.98% /91.51%

MPNN-mean (Gilmer et al., 2017)
MPNN-sum (Gilmer et al., 2017)
MPNN-max (Gilmer et al., 2017)

100.0% / 100.0%
99.66% / 100.0%
100.0% / 100.0%

61.05% / 57.89%
94.25% / 100.0%
100.0% / 100.0%

27.17% [21.40%
94.72% | 98.63%
99.92% / 99.80%

Reachability accuracy

100,00

005 | ——
o i [R s)
. = oo T o4 |
. Rl — LsTM MPNN-sum p—— P I| — I5TM MENN-SUM
al —— MPNN-max GAT —— MPNN-max GAT L —— MPNN-max GAT
MPNN-mean — GAT-full //__ —— MPNN-mean —— GAT-full —— MPNN-mean — GAT-full
0.3

0.2

@ 1 2 3 4 5 & T 8 9 011 12 13 14 13 16 17 18 01 2 3 4 5 6 7 & 9 011 12 13 14 15 16 17 18 D1 & 3 4 5 & 7 8 9 1011 12 13 14 15 16 17 18

Timestamp Timastamip Tirmes tamp

Figure 3: The per-step algorithm execution performances in terms of reachability accuracy (left),
distance mean-squared error (middle) and predecessor accuracy (right), tested on 100-node graphs
after training on 20-node graphs. Please mind the scale of the MSE plot.

Processor as Transformer

e Back to input sequence (set),

but stronger generalization

* Transformer with encoder mask
~ graph attention

Nx

* Use Transformer with:
* Binary representation of numbers
* Dynamic conditional masking

Yan, Yujun, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi.

Decoding
Masked v
alue
encoding
| Sigmoid |
r I:ayztr
~ Add&Norm K—— [Linear |
f ! \
Feed Forward ’ [_Add &TNOFm l
—
,__I Add & Norm] | Feed Forward ‘
| Masked ’ [Add & Norm J«
attention
: ’ ‘ Attention I
Em

. Input !
) sequence ; | mask!

=z

"Neural Execution Engines: Learning to Execute Subroutines." Advances in Neural Information Processing Systems 33 (2020).

N
11 Input

Mask
prediction

Pointer | | Output mask

Add & Norm |
L
‘ Attention ‘
k4 A

...............

Nx

‘ Feed Forward ‘
{

{ 1D convolution

[Normalize]

-—-‘ Concat ‘

| Sigmoid N

Next step

55

Training with execution trace

selection_sortdata):
sorted_iist =]
while (lenidata) = 0):

I rriin_inclex, min_slement = find_minidata) I

data deletamin_index)
sorted fst.append(min_slement)
return sorted list

firved_rmin (clata):
rmin_alement = =1
min_index = -1
for Index. element in enumerate{data).
if (plament < min_elemant):
miir_alemeant = alamernt
min_index = index

raturn [min_index, min_elemeant]

merge_sort{data, start, end):
if (start < end):

mid = (start + end) / 2

merge_sort(data, start, mid)
merge_sort(data, mid+1, end)

return merge(data, start, mid, end)

shortest_pathigraph, source_node, shortest_path):
dists =[]
nodes =[]
anchor_node = source_node
node_list = graph.get_nodas{)

while node_list:

possible_paths = sumi(graph.adifanchor_node),
shortest_pathianchor_noda))

| shortast_path = min(possible_paths, shortest_path)]

minimum_spanning_tree(graph, source_nade, node_wal):

msi_nodes =[]

mst_weights =[]

anchor_node = source_node
res_nodes = graph.get_nodes()

while node_list:
adj_list = graph.adjianchor_node)

node_valires_nodes) = mininode_valires_nodas),
adj_lstires_nodes))

[aﬂcﬂnr_nnd&. min_glist = minjshortest _pathfrmds_ﬂs!,l}l

node_list. deletedanchor_node)
nodes.appendianchor_node)
dists. append{min_disf)

return dists, nodes

| anchor_node, min_weight = min{nrode_valires_nodes))

mst_nodes.append(anchor_node)
mst_weights_append(min_weight)
res_nodes.deletefanchor_node)

return mst_nodes, mst_weighis

data

Neural Execution
Engine

learned mask
min_element

append()

sorted list

data end-start

Neural Execution
Engine

partially sorted_data Jearned mask

anchor_node

shortest path

graph.adj
e

possible_paths

Neural Execution
Engine

shortest_path

Neural Execution
Engine

min dist

{learned mask PP)

nodes dists

res nodes

anchor_node

graph.adj

) 4

Neural Execution
Engine

Neural Execution
Engine

anchor_node min_weigh

res_nodes

mst_nodes mst_weights

56

120
S(ioo -
£ a0l T
= =
-
g 60 .
NEE 100.00% |3 1
y Q 401
e r e S u S S O W Modified 98.29% 2 “Vanilla (ane_hot in & out)
Vanilla 93.11% 20 Modified (pinary in & out)
o NEE

8 20 40 60 80100

strong generalization

Figure 3: Sorting performance of transformers trained
on sequences of up to length 8.

250

200

150 |

0
20
40
60
80

100
0 20 40 60 80 100

(a) Fuzzy Attention
(seg2seq)

0 20 40 60 80 100
(b) Clear Attention
(Selection Sort NEE)

Figure 4: Visualizing decoder attention weights.
Attention is over each row. Transformer attention
saturates as the output sequence length increases,
while NEE maintains sharp attention.

100

50

o @® 163 ; o 298 g
0 169 482 ~ \6:62 ' i(;zj? i 66. ~ e ® Merg,e sort
460 i 25 1 = * -‘~)+2
25 + " Shortest path

(a) Sorting (b) Multiplication (c) Addition with 65% holdout

N‘ 25 50 75 100
Selection sort | 100.00 100.00 100.00 100.00

| 100.00 100.00 100.00 100.00

| 100.00 100.00 100.00 100.00*

Minimum spanning tree | 100.00 100.00 100.00 100.00

Figure 5: 3D PCA visualization of learned bitwise embeddings for different numeric tasks. The embeddings
exhibit regular, task-dependent structure, even when most numbers have not been seen in training (c).

57

QA

	3. Reasoning as Memory
	Introduction
	Memory is part of intelligence
	Memory-reasoning analogy
	Common memory activities
	Memory taxonomy based on memory content
	Item memory
	Distributed item memory as �associative memory
	Associate memory can be implemented as Hopfield network
	Rule-based reasoning with associative memory
	Memory-augmented neural networks: computation-storage separation
	Neural Turing Machine (NTM)
	Addressing mechanism in NTM
	Optimal memory writing for memorization
	Better memorization means better algorithmic reasoning
	Memory of independent entities
	Recurrent entity network
	Recurrent Independent Mechanisms
	Relational memory
	Motivation for relational memory: item memory is weak at recognizing relationships
	Dual process in memory
	Memory as graph
	bAbI
	Memory of graphs access conditioned on query
	Capturing relationship can be done via memory slot interactions using attention
	Relational Memory Core (RMC) operation
	Allowing pair-wise interactions can answer questions on temporal relationship
	Dot product attention works for simple relationship, but …
	Self-attentive associative memory
	Complicated relationship needs high-order relational memory
	Program memory
	Predefining program for subtask
	Program selection is based on�parser, others are end2end trained
	Slide Number 34
	Slide Number 35
	Scaling with memory of mini-programs
	Recurrent program attention to retrieve singular components of a program
	Slide Number 38
	QA
	10. Combinatorics reasoning
	Implement combinatorial algorithms with neural networks
	Processor as RNN
	Processor as MANN
	DNC: item memory for graph reasoning
	NUTM: implementing multiple algorithms at once
	STM: relational memory for graph reasoning
	Processor as graph neural network (GNN)
	Example: GNN for a specific problem �(DNF counting)
	Example: GNN trained with reinforcement learning (maximum common subgraph)
	Learning state representation with GNN
	Neural networks and algorithms alignment
	GNN is aligned with Dynamic Programming (DP)
	If alignment exists  step-by-step supervision
	Slide Number 54
	Processor as Transformer
	Training with execution trace
	The results show�strong generalization
	QA

