
3. Reasoning as Memory
Introduction
Item memory

Relational memory
Program memory
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Introduction
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Memory is part of intelligence

• Memory is the ability to 
store, retain and recall
information 

• Brain memory stores items, 
events and high-level 
structures

• Computer memory stores 
data and temporary 
variables
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Memory-reasoning analogy
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• 2 processes: fast-slow
oMemory: familiarity-recollection

• Cognitive test:
oCorresponding reasoning and 

memorization performance 
o Increasing # premises, 

inductive/deductive reasoning is 
affected

Heit, Evan, and Brett K. Hayes. "Predicting reasoning from memory." Journal of Experimental Psychology: General 140, no. 1 (2011): 76.



Common memory activities 

• Encode: write information to the 
memory, often requiring 
compression capability

• Retain: keep the information 
overtime. This is often assumed in 
machinery memory

• Retrieve: read information from the 
memory to solve the task at hand

Encode

Retain

Retrieve
5



Memory taxonomy based on memory content
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Item 
Memory

• Objects, events, items, 
variables, entities

Relational 
Memory

• Relationships, structures, 
graphs

Program 
Memory

• Programs, functions, 
procedures, how-to knowledge



Item memory
Associative memory
RAM-like memory
Independent memory
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Distributed item memory as 
associative memory
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"Green" means 
"go," but what 

does "red" mean?

Language

birthday party on 
30th Jan

Time Object

Where is my pen?
What is the 
password?

Behaviour

8

Semantic
memory

Episodic
memory

Working
memory

Motor
memory



Associate memory can be implemented as 
Hopfield network

Correlation matrix memory Hopfield network

Encode Retrieve Retrieve

Feed-forward
retrieval

Recurrent
retrieval 9

“Fast-weight 
�𝑀𝑀



Rule-based reasoning with associative memory

• Encode a set of rules: 
“pre-conditions
post-conditions”
• Support variable 

binding, rule-conflict 
handling and partial 
rule input

• Example of encoding 
rule “A:1,B:3,C:4X”

10

Outer product
for binding

Austin, Jim. "Distributed associative memories for high-speed symbolic reasoning." Fuzzy Sets and Systems 82, no. 2 (1996): 223-233.



Memory-augmented neural networks: 
computation-storage separation 

11RNN Symposium 2016: Alex Graves - Differentiable Neural Computer

RAM



Neural Turing Machine (NTM)

• Memory is a 2d matrix
• Controller is a neural 

network
• The controller read/writes  

to memory at certain 
addresses.

• Trained end-to-end, 
differentiable

• Simulate Turing Machine
support symbolic reasoning, 
algorithm solving

12
Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).



Addressing mechanism in NTM

Input

𝑒𝑒𝑡𝑡, 𝑎𝑎𝑡𝑡

Memory writing Memory reading



Optimal memory writing for memorization

• Simple finding: writing too often 
deteriorates memory content (not 
retainable)

• Given input sequence of length T 
and only D writes, when should we 
write to the memory?

14Le, Hung, Truyen Tran, and Svetha Venkatesh. "Learning to Remember More with Less Memorization." In International Conference on Learning Representations. 2018.

Uniform writing is optimal for 
memorization



Better memorization means better algorithmic 
reasoning

15

T=50, D=5

Regular Uniform (cached)



Memory of independent entities

• Each slot store one or some entities 
• Memory writing is done separately for 

each memory slot
each slot maintains the life of one or 
more entities
• The memory is a set of N parallel RNNs
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John   Apple      __ John    Apple    Office

Apple  John       __

John    Apple     Kitchen

Apple   John     Office Apple   John      Kitchen

Weston, Jason, Bordes, Antoine, Chopra, Sumit, and Mikolov, Tomas. 
Towards ai-complete question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015.

RNN 1

RNN 2

…

Time



Recurrent entity network
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Garden

Henaff, Mikael, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
"Tracking the world state with recurrent entity networks." 
In 5th International Conference on Learning Representations, ICLR 2017. 2017.



Recurrent Independent Mechanisms

18Goyal, Anirudh, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard Schölkopf. "Recurrent independent mechanisms.“ ICLR21.



Relational memory
Graph memory
Tensor memory
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Motivation for relational memory: item 
memory is weak at recognizing relationships

Item
Memory

• Store and retrieve individual items
• Relate pair of items of the same time step
• Fail to relate temporally distant items

20



Dual process in memory
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• Store items
• Simple, low-order
• System 1

Relational
Memory

• Store relationships between items
• Complicated, high-order
• System 2

Item
Memory

Howard Eichenbaum, Memory, amnesia, and the hippocampal system (MIT press, 1993).
Alex Konkel and Neal J Cohen, "Relational memory and the hippocampus: representations and methods", Frontiers in neuroscience 3 (2009).



Memory as graph

• Memory is a static graph with 
fixed nodes and edges

• Relationship is somehow
known
• Each memory node stores the 

state of the graph’s node
• Write to node via message 

passing
• Read from node via MLP

22
Palm, Rasmus Berg, Ulrich Paquet, and Ole Winther. "Recurrent Relational Networks." In NeurIPS. 2018.



bAbI
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Fact 1

Fact 2

Fact 3

Question
Node

Edge

Answer

CLEVER

Node
(colour, shape. position)

Edge
(distance)



Memory of graphs access conditioned on 
query
• Encode multiple graphs, 

each graph is stored in a set 
of memory row

• For each graph, the 
controller read/write to the 
memory:

• Read uses content-based 
attention

• Write use message passing
• Aggregate read vectors from 

all graphs to create output

24Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv preprint arXiv:1808.04247 (2018).



Capturing relationship can be done via 
memory slot interactions using attention
• Graph memory needs customization to an explicit design of nodes and edges
• Can we automatically learns structure with a 2d tensor memory?
• Capture relationship: each slot interacts with all other slots (self-attention)

25
Santoro, Adam, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap.
"Relational recurrent neural networks." In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7310-7321. 2018.



Relational Memory Core (RMC) operation

26

RNN-like
Interface
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Allowing pair-wise interactions can answer 
questions on temporal relationship



Dot product attention works for simple 
relationship, but …
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What is  
most 

similar to 
me?

0.7         0.9            - 0.1          0.4

What is  most 
similar to me 
but different 
from tiger?

For hard relationship, scalar 
representation is limited



Self-attentive associative memory

29Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020.



Complicated relationship needs high-order 
relational memory

30

Extract items
Item
memory

Associate every pairs of them

…

3d relational 
tensor

Relational
memory



Program memory
Module memory
Stored-program memory
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Predefining program for subtask

• A program designed for a task 
becomes a module

• Parse a question to module 
layout (order of program 
execution)

• Learn the weight of each 
module to master the task

32Andreas, Jacob, Marcus Rohrbach, Trevor Darrell, and Dan Klein. "Neural module networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39-48. 2016.



Program selection is based on
parser, others are end2end trained

33

5 module
templates

1 2
3

4

5
Parsing



The most powerful memory is one that stores 
both program and data

• Computer architecture: Universal 

Turing Machines/Harvard/VNM

• Stored-program principle

• Break a big task into subtasks, 

each can be handled by a 

TM/single purposed program 

stored in a program memory

34https://en.wikipedia.org/



NUTM: Learn to select program (neural weight) via 
program attention

• Neural stored-program memory 

(NSM) stores key (the address) 

and values (the weight)

• The weight is selected and 

loaded to the controller of NTM

• The stored NTM weights and the 

weight of the NUTM is learnt 

end-to-end by backpropagation
35

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory." 
In International Conference on Learning Representations. 2019.



Scaling with memory of mini-programs

• Prior,  1 program = 1 neural 
network (millions of parameters)

• Parameter inefficiency since the 
programs do not share common 
parameters

• Solution: store sharable mini-
programs to compose infinite 
number of programs

36

it is analogous to building Lego structures
corresponding to inputs from basic Lego bricks.



Recurrent program attention to retrieve 
singular components of a program

37
Le, Hung, and Svetha Venkatesh. "Neurocoder: Learning General-Purpose Computation Using Stored Neural Programs." arXiv preprint arXiv:2009.11443 (2020).
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Program attention is equivalent to 
binary decision tree reasoning

Recurrent program attention auto 
detects task boundary



QA
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10. Combinatorics reasoning
RNN

MANN
GNN

Transformer

40



Implement combinatorial algorithms with 
neural networks

41

Generalizable
Inflexible

Noisy
High dimensional

Train neural processor P to imitate algorithm A

Processor P:
(a) aligned with the 

computations of the target 
algorithm; 

(b) operates by matrix 
multiplications, hence 
natively admits useful 
gradients;

(c) operates over high-
dimensional latent spaces

Veličković, Petar, and Charles Blundell. "Neural Algorithmic Reasoning." arXiv preprint arXiv:2105.02761 (2021).



Processor as RNN
• Do not assume knowing the 

structure of the input, input as a 
sequence 
not really reasonable, harder to 
generalize
• RNN is Turing-complete  can 

simulate any algorithm
• But, it is not easy to learn the 

simulation from data (input-output)
Pointer network  

42

Assume O(N) memory
And O(N^2) computation
N is the size of input

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." 
In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, pp. 2692-2700. 2015.



Processor as MANN

• MANN simulates neural 
computers or Turing 
machine ideal for 
implement algorithms

• Sequential input, no 
assumption on input 
structure

• Assume O(1) memory
and O(N) computation

43Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016)



DNC: item 
memory for 
graph 
reasoning 

44
Graves, A., Wayne, G., Reynolds, M. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016)



NUTM: implementing multiple algorithms at once

45

Le, Hung, Truyen Tran, and Svetha Venkatesh. "Neural Stored-program Memory." 
In International Conference on Learning Representations. 2019.



STM: relational 
memory for 
graph reasoning

46Le, Hung, Truyen Tran, and Svetha Venkatesh. "Self-attentive associative memory." In International Conference on Machine Learning, pp. 5682-5691. PMLR, 2020.



Processor as graph neural network (GNN)

47

https://petar-v.com/talks/Algo-WWW.pdf
Veličković, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
"Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

Motivation:
• Many algorithm operates on graphs 
• Supervise graph neural networks with algorithm operation/step/final output
• Encoder-Process-Decode framework: 

Attention Message
passing

https://petar-v.com/talks/Algo-WWW.pdf


Example: GNN for a specific problem 
(DNF counting)
• Count #assignments that satisfy disjuntive

normal form (DNF) formula
• Classical algorithm is P-hard O(mn)
• m: #clauses, n: #variables
• Supervised training

48

Best: O(m+n)

Abboud, Ralph, Ismail Ceylan, and Thomas Lukasiewicz. "Learning to reason: Leveraging neural networks for approximate DNF counting.“
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3097-3104. 2020.



Example: GNN trained with reinforcement 
learning (maximum common subgraph ) 
• Maximum common subgraph (MCS) 

is NP-hard
• Search for MCS:

• BFS then pruning
• Which node to visit first?

• Cast to RL:
• State: 

• Current subgraph
• Node-node mapping
• Input graph

• Action: Node pair or edge will be 
visited

• Reward: +1 if a node pair is selected
• Q(s,a)=largest common subgraph size

49

Bai, Yunsheng, Derek Xu, Alex Wang, Ken Gu, Xueqing Wu, Agustin Marinovic, Christopher Ro, Yizhou Sun, and Wei Wang.
"Fast detection of maximum common subgraph via deep q-learning." arXiv preprint arXiv:2002.03129 (2020).



Learning state representation with GNN

50

Pretrain with ground-truth Q or expert estimation
Then train as DQN

Bidomain representation



Neural networks and algorithms alignment 

51Xu, Keylu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What Can Neural Networks Reason About?." ICLR 2020 (2020).

https://petar-v.com/talks/Algo-WWW.pdf

Neural exhaustive
search



GNN is aligned with 
Dynamic Programming (DP)

52
Neural exhaustive
search



If alignment exists  step-by-step supervision

53
Veličković, Petar, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. "Neural Execution of Graph Algorithms." In International Conference on Learning Representations. 2019.

• Merely simulate the
classical graph algorithm, 
generalizable
• No algorithm discovery 

Joint training is 
encouraged



54



Processor as Transformer

• Back to input sequence (set), 
but stronger generalization

• Transformer with encoder mask 
~ graph attention

• Use Transformer with:
• Binary representation of numbers
• Dynamic conditional masking 

55
Yan, Yujun, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. 
"Neural Execution Engines: Learning to Execute Subroutines." Advances in Neural Information Processing Systems 33 (2020).

Next step

Masked
encoding

Decoding

Mask
prediction



Training with execution trace

56



57

The results show
strong generalization



QA
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