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Lecture 2: Dual system of reasoning
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• Existing ideas for System 2

• Theory of mind
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DL has been fantastic, but …

• It is great at interpolating
•  data hungry to cover all variations and smooth local manifolds

•  fail to handle change of distributions

•  little systematic generalization (novel combinations)

• Lack of human-perceived reasoning capability
• Lack natural mechanism to incorporate prior knowledge, e.g., common sense

• No built-in causal mechanisms

•  Have trust issues!

• To be fair, may of these problems are common in statistical learning!
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Problem: Systematic generalization
• Refers to the ability to work robustly with new combinations with zero 

probability in training data.

• E.g., if we understand ‘John loves Mary’, then we can also understand ‘Mary loves 
John’, but machine may fail due to zero probability of the latter if not done 
properly.

• Current DL has a major problem with it.

• This is not new: Has been argued for 30+ years!

• Much research is needed on multiple fronts (e.g., syntax, indirection, 
datasets, measuring)
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Bahdanau, Dzmitry, et al. "Systematic generalization: what is required and can it be 
learned?." arXiv preprint arXiv:1811.12889 (2018).

Fodor, Jerry A., and Zenon W. Pylyshyn. "Connectionism and cognitive architecture: A 
critical analysis." Cognition 28.1-2 (1988): 3-71.



Problem: Out-of-distribution

• Data, context change, both life-long and life-wide, 
sometimes rapidly (e.g., context switch), sometimes slowly 
(e.g., aging)

• Other agents in the play  non-stationaries

• Continual learning is needed  need to handle catastrophic 
forgetting.
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Hypothesis: We need System 2

• Decoupling from 
perception/representation (which 
deep learning does well)

• Holds hypothetical thought
• Enabling mental travels & imagination.

• Slow. Deliberative. Conscious.

• Needs working memory. But the size is 
not essential. Its attentional control is.
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Evans, Jonathan St BT. "Dual-processing accounts of reasoning, judgment, and social 

cognition." Annu. Rev. Psychol. 59 (2008): 255-278.



System 2 may have two layers: Reflective and 
Algorithmic

Stanovich, K. E. (2009). Distinguishing the reflective, 
algorithmic, and autonomous minds: Is it time for a tri-
process theory. In two minds: Dual processes and 
beyond, 55-88.
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A possible architecture of the Dual System

System 1: 
Intuitive

System 1: 
Intuitive

System 1: 
Intuitive

• Fast
• Implicit/automatic
• Pattern recognition
• Multiple

System 2: 
Analytical

• Slow
• Deliberate/rational
• Careful analysis
• Single, sequential

Single
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Object-concept binding
• Perceived data (e.g., visual objects) may not share the same semantic space 

with high-level concepts.

• Binding between concept-object enables reasoning at the concept level
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Example of concept-object binding in LOGNet (Le et al, IJCAI’2020)

More reading: Greff, Klaus, Sjoerd van Steenkiste, and Jürgen Schmidhuber. "On the 
binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).
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Attention & Indirection

• Focus on the most relevant pieces for 
each reasoning step.

• Piece = item, relation & sub-
program/module.

• When piece is pointer to others, we have 
indirection, a powerful way to generalize 
to different representations if the 
“names” of items & relations remain.

• May need ability to “zoom in” – coarse to 
fine attention.

• E.g., face detection  eye detection  eye 
corners
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Figure credit: Jonathan Hui

Iterative message passing in BP

• It iteratively computes “beliefs” 
of unobserved variables based 
on evidences from observed 
variables.

• Known result in 2001-2003: BP 
minimises Bethe free-energy 
minimization.

• Does BP qualify as a deliberative 
mechanism for System 2?
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Heskes, Tom. "Stable fixed points of loopy belief propagation are local minima of the bethe free 
energy." Advances in neural information processing systems. 2003.



Neural graph message passing
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#REF: Pham, Trang, et al. "Column Networks 
for Collective Classification." AAAI. 2017.

Relation 
graph

GCN update rule, vector form

GCN update rule, matrix form

Generalized message passing



What we have in store: Modular recurrences

• RIM: Recurrent Independent Mechanisms
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Goyal, Anirudh, et al. "Recurrent independent mechanisms." arXiv preprint 
arXiv:1909.10893 (2019).



Self-attentive associative memories (SAM)
Learning relations automatically over time
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Hung Le, Truyen Tran, Svetha Venkatesh, “Self-attentive associative 
memory”, ICML'20.



Memory of Programs in Neural Universal Turing 
Machine

Hung Le, Truyen Tran, Svetha Venkatesh, “Neural stored-program memory”, ICLR'20.



Attention priors with syntax

53(Thao Le et al, on going)



A simple test: Separate reasoning process from perception
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• Video QA: inherent dynamic nature of visual content over time.
• Recent success in visual reasoning with multi-step inference and 

handling of compositionality.

System 1: visual 
representation

System 2: High-
level reasoning

Le, Thao Minh, Vuong Le, Svetha Venkatesh, and Truyen Tran. "Neural Reasoning, Fast 
and Slow, for Video Question Answering." IJCNN (2020).



20/08/2021 55

Separate reasoning process from perception (2)



System 1: Clip-based Relation Network
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For 𝑘𝑘 = 2,3, … ,𝐾𝐾 where ℎ𝜙𝜙 and 
𝑔𝑔𝜃𝜃 are linear transformations 
with parameters 𝜙𝜙 and 𝜃𝜃, 
respectively, for feature fusion.

Why temporal relations?
• Situate an event/action in relation to 

events/actions in the past and 
formulate hypotheses on future 
events.

• Long-range sequential modeling.



System 2 Candidate: MAC Net
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Hudson, Drew A., and Christopher D. Manning. "Compositional attention 
networks for machine reasoning." ICLR 2018.
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Where would ToM fit in?

System 1: 
Intuitive

System 1: 
Intuitive

System 1: 
Intuitive

• Fast
• Implicit/automatic
• Pattern recognition
• Multiple

System 2: 
Analytical

• Slow
• Deliberate/rational
• Careful analysis
• Single, sequential

Single
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Contextualized recursive reasoning

• Thus far, QA tasks are straightforward and objective:
• Questioner: I will ask about what I don’t know.

• Answerer: I will answer what I know.

• Real life can be tricky, more subjective:
• Questioner: I will ask only questions I think they can 

answer.

• Answerer 1: This is what I think they want from an answer.

• Answerer 2: I will answer only what I think they think I can.
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We need Theory of Mind to function socially.



Social dilemma: Stag Hunt games

• Difficult decision: individual outcomes (selfish) 
or group outcomes (cooperative).

• Together hunt Stag (both are cooperative): Both have more 
meat.

• Solely hunt Hare (both are selfish): Both have less meat.

• One hunts Stag (cooperative), other hunts Hare (selfish): Only 
one hunts hare has meat.

• Human evidence: Self-interested but 
considerate of others (cultures vary).

• Idea: Belief-based guilt-aversion
• One experiences loss if it lets other down.

• Necessitates Theory of Mind: reasoning about other’s mind.



Theory of Mind Agent with Guilt Aversion (ToMAGA)

Update Theory of Mind 

• Predict whether other’s behaviour are 
cooperative or uncooperative

• Updated the zero-order belief (what 
other will do)

• Update the first-order belief (what other 
think about me)

Guilt Aversion

• Compute the expected material reward
of other based on Theory of Mind

• Compute the psychological rewards, i.e. 
“feeling guilty”

• Reward shaping: subtract the expected 
loss of the other.

Nguyen, Dung, et al. "Theory of Mind with Guilt Aversion Facilitates 
Cooperative Reinforcement Learning." Asian Conference on Machine 
Learning. PMLR, 2020.

[Slide credit: Dung Nguyen]



Machine ToM Architecture (inside the Observer)

Successor 
representationsnext-step action 

probability

goal

Rabinowitz, Neil, et al. "Machine theory of mind." International conference on machine learning. PMLR, 2018.

[Slide credit: Dung Nguyen]



A ToM architecture

• Observer maintains memory of 
previous episodes of the agent.

• It theorizes the “traits” of the 
agent.

• Implemented as Hyper Networks.

• Given the current episode, the 
observer tries to infer goal, 
intention, action, etc of the agent.

• Implemented as memory retrieval 
through attention mechanisms.
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End of Lecture 2
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